Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 198: 106499, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38640690

RESUMO

Determining the proximity of ecosystems to tipping points is a critical yet complex task, heightened by the growing severity of climate change and local anthropogenic stressors on ecosystem integrity. Spatial Early Warning Signals (EWS) have been recognized for their potential in preemptively signaling regime shifts to degraded states, but their performance in natural systems remains uncertain. In this study, we investigated the performance of 'recovery length' - the spatial extent of recovery from a perturbation - and spatial EWS as early warnings of regime shifts in Posidonia oceanica meadows. Our experimental approach involved progressively thinning the P. oceanica canopy, from 0 to 100%, at the edge of a dead-matte area - a structure formed by dead P. oceanica rhizomes and colonized by algal turfs - to promote the propagation of algal turfs. We calculated recovery length as the distance from the dead-matte edge to the point where algal turfs colonized the canopy-thinned region. Our results showed a linear increase in recovery length with canopy thinning, successfully anticipated the degradation of P. oceanica. While spatial skewness decline with increased canopy degradation, other spatial EWS, such as Moran correlation at lag-1, low-frequency spatial spectra, and spatial variance, were ineffective in signaling this degradation. These findings underscore the potential of recovery length as a reliable early warning indicator of regime shifts in marine coastal ecosystems.

2.
Nat Commun ; 15(1): 2126, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459105

RESUMO

Ocean warming and acidification, decreases in dissolved oxygen concentrations, and changes in primary production are causing an unprecedented global redistribution of marine life. The identification of underlying ecological processes underpinning marine species turnover, particularly the prevalence of increases of warm-water species or declines of cold-water species, has been recently debated in the context of ocean warming. Here, we track changes in the mean thermal affinity of marine communities across European seas by calculating the Community Temperature Index for 65 biodiversity time series collected over four decades and containing 1,817 species from different communities (zooplankton, coastal benthos, pelagic and demersal invertebrates and fish). We show that most communities and sites have clearly responded to ongoing ocean warming via abundance increases of warm-water species (tropicalization, 54%) and decreases of cold-water species (deborealization, 18%). Tropicalization dominated Atlantic sites compared to semi-enclosed basins such as the Mediterranean and Baltic Seas, probably due to physical barrier constraints to connectivity and species colonization. Semi-enclosed basins appeared to be particularly vulnerable to ocean warming, experiencing the fastest rates of warming and biodiversity loss through deborealization.


Assuntos
Biodiversidade , Invertebrados , Animais , Oceanos e Mares , Peixes , Temperatura , Água , Ecossistema , Aquecimento Global
3.
Nat Commun ; 15(1): 1822, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418445

RESUMO

Protection from direct human impacts can safeguard marine life, yet ocean warming crosses marine protected area boundaries. Here, we test whether protection offers resilience to marine heatwaves from local to network scales. We examine 71,269 timeseries of population abundances for 2269 reef fish species surveyed in 357 protected versus 747 open sites worldwide. We quantify the stability of reef fish abundance from populations to metacommunities, considering responses of species and functional diversity including thermal affinity of different trophic groups. Overall, protection mitigates adverse effects of marine heatwaves on fish abundance, community stability, asynchronous fluctuations and functional richness. We find that local stability is positively related to distance from centers of high human density only in protected areas. We provide evidence that networks of protected areas have persistent reef fish communities in warming oceans by maintaining large populations and promoting stability at different levels of biological organization.


Assuntos
Conservação dos Recursos Naturais , Peixes , Animais , Humanos , Peixes/fisiologia , Oceanos e Mares , Clima , Ecossistema , Recifes de Corais
4.
Ecology ; 105(3): e4246, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286517

RESUMO

Understanding how synchronous species fluctuations affect community stability is a main research topic in ecology. Yet experimental studies evaluating how changes in disturbance regimes affect the synchrony and stability of populations and communities remain rare. We hypothesized that spatially heterogeneous disturbances of moderate intensity would promote metacommunity stability by decreasing the spatial synchrony of species fluctuations. To test this hypothesis, we exposed rocky shore communities of algae and invertebrates to homogeneous and gradient-like spatial patterns of disturbance at two levels of intensity for 4 years and used synchrony networks to characterize community responses to these disturbances. The gradient-like disturbance at low intensity enhanced spatial ß diversity compared to the other treatments and produced the most heterogeneous and least synchronized network, which was also the most stable in terms of population and community fluctuations. In contrast, homogeneous disturbance destabilized the community, enhancing spatial synchronization. Intense disturbances always reduced spatial ß diversity, indicating that strong perturbations could destabilize communities via biotic homogenization regardless of their spatial structure. Our findings corroborated theoretical predictions, emphasizing the importance of spatially heterogeneous disturbances in promoting stability by amplifying asynchronous spatial and temporal fluctuations in population and community abundance. In contrast to other networks, synchrony networks are vulnerable to the removal of most peripheral nodes, which are less synchronized, but may contribute more to stability than other nodes by dampening large fluctuations in species abundance. Our findings suggest that climate change and direct anthropogenic disturbance can compromise the stability of ecological communities through combined effects on diversity and synchrony, as well as further affecting ecosystems through habitat loss.


Assuntos
Ecologia , Ecossistema , Animais , Invertebrados , Luz
5.
Sci Total Environ ; 894: 164972, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37336396

RESUMO

The Tuscan Archipelago, with its great environmental and economic importance, is one of the highest oil spill density areas in the Western Mediterranean. In this study, an interdisciplinary approach, based on numerical applications and experimental methods, was implemented to quantify the risk of oil spill impact along the rocky shores of this archipelago in relation to the maritime activities. The risk, defined as a combination of the hazard and the damage, was quantified for the biennial 2019-2020 in order to account for the effects generated by the COVID-19 pandemic restrictions on the local maritime traffic. A high-resolution oceanographic and particle tracking model was applied to simulate the trajectories of possible oil spill events and to quantify the hazard of impacts on the coast of numerical particles, daily seeded in correspondence of those marine sectors that are characterised by relevant traffic of vessels. The damage, expressed as the product of exposure and vulnerability, was estimated following an extensive sampling approach aimed at quantifying the ecological status of the rocky shores in four selected islands of the Tuscan Archipelago. Results revealed and quantified the direct relationship between the temporary reduction of the maritime traffic due to the pandemic restrictions, and the probability of suffering damage from oil spill impact along the archipelago's rocky shores, which was highly context-dependent.


Assuntos
COVID-19 , Poluição por Petróleo , Humanos , Poluição por Petróleo/efeitos adversos , Pandemias , COVID-19/epidemiologia , Biodiversidade
6.
Ecol Appl ; 33(5): e2867, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37114630

RESUMO

As ß-diversity can be seen as a proxy of ecological connections among species assemblages, modeling the decay of similarity in species composition at increasing distance may help elucidate spatial patterns of connectivity and local- to large-scale processes driving community assembly within a marine region. This, in turn, may provide invaluable information for setting ecologically coherent networks of marine protected areas (MPAs) in which protected communities are potentially interrelated and can mutually sustain against environmental perturbations. However, field studies investigating changes in ß-diversity patterns at a range of spatial scales and in relation to disturbance are scant, limiting our understanding of how spatial ecological connections among marine communities may affect their recovery dynamics. We carried out a manipulative experiment simulating a strong physical disturbance on subtidal rocky reefs at several locations spanning >1000 km of coast in the Adriatic Sea (Mediterranean Sea) and compared ß-diversity patterns and decay of similarity with distance and time by current transport between undisturbed and experimentally disturbed macrobenthic assemblages to shed light on connectivity processes and scales involved in recovery. In contrast to the expectation that very local-scale processes, such as vegetative regrowth and larval supply from neighboring undisturbed assemblages, might be the major determinants of recovery in disturbed patches, we found that connectivity mediated by currents at larger spatial scales strongly contributed to shape community reassembly after disturbance. Across our study sites in the Adriatic Sea, ß-diversity patterns suggested that additional protected sites that matched hotspots of propagule exchange could increase the complementarity and strengthen the ecological connectivity throughout the MPA network. More generally, conditional to habitat distribution and selection of sites of high conservation priority (e.g., biodiversity hotspots), setting network internode distance within 100-150 km, along with sizing no-take zones to cover at least 5 km of coast, would help enhance the potential connectivity of Mediterranean subtidal rocky reef assemblages from local to large scale. These results can help improve conservation planning to achieve the goals of promoting ecological connectivity within MPA networks and enhancing their effectiveness in protecting marine communities against rapidly increasing natural and anthropogenic disturbances.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Conservação dos Recursos Naturais/métodos , Biodiversidade , Larva , Peixes
7.
Ecol Evol ; 12(10): e9418, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36311394

RESUMO

Understanding how multifactorial fluctuating environments affect species and communities remains one of the major challenges in ecology. The spatial configuration of the environment is known to generate complex patterns of correlation among multiple stressors. However, to what extent the spatial correlation between simultaneously fluctuating variables affects ecological assemblages in real-world conditions remains poorly understood. Here, we use field experiments and simulations to assess the influence of spatial correlation of two relevant climate variables - warming and sediment deposition following heavy precipitation - on the biomass and photosynthetic activity of rocky intertidal biofilm. First, we used a response-surface design experiment to establish the relation between biofilm, warming, and sediment deposition in the field. Second, we used the response surface to generate predictions of biofilm performance under different scenarios of warming and sediment correlation. Finally, we tested the predicted outcomes by manipulating the degree of correlation between the two climate variables in a second field experiment. Simulations stemming from the experimentally derived response surface showed how the degree and direction (positive or negative) of spatial correlation between warming and sediment deposition ultimately determined the nonlinear response of biofilm biomass (but not photosynthetic activity) to fluctuating levels of the two climate variables. Experimental results corroborated these predictions, probing the buffering effect of negative spatial correlation against extreme levels of warming and sediment deposition. Together, these results indicate that consideration of nonlinear response functions and local-scale patterns of correlation between climate drivers can improve our understanding and ability to predict ecological responses to multiple processes in heterogeneous environments.

8.
Biol Rev Camb Philos Soc ; 97(4): 1306-1324, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35174616

RESUMO

Network theory offers innovative tools to explore the complex ecological mechanisms regulating species associations and interactions. Although interest in ecological networks has grown steadily during the last two decades, the application of network approaches has been unequally distributed across different study systems: while some kinds of interactions (e.g. plant-pollinator and host-parasite) have been extensively investigated, others remain relatively unexplored. Among the latter, aquatic macrophyte-animal associations in coastal environments have been largely neglected, despite their major role in littoral ecosystems. The ubiquity of macrophyte systems, their accessibility and multi-faceted ecological, economical and societal importance make macrophyte-animal systems an ideal subject for ecological network science. In fact, macrophyte-animal networks offer an aquatic counterpart to terrestrial plant-animal networks. In this review, we show how the application of network analysis to aquatic macrophyte-animal associations has the potential to broaden our understanding of how coastal ecosystems function. Network analysis can also provide a key to understanding how such ecosystems will respond to on-going and future threats from anthropogenic disturbance and environmental change. For this, we: (i) identify key issues that have limited the application of network theory and modelling to aquatic animal-macrophyte associations; (ii) illustrate through examples based on empirical data how network analysis can offer new insights on the complexity and functioning of coastal ecosystems; and (iii) provide suggestions for how to design future studies and establish this new research line into network ecology.


Assuntos
Ecossistema , Plantas , Animais , Meio Ambiente
9.
Adv Mar Biol ; 89: 1-51, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34583814

RESUMO

Global change is striking harder and faster in the Mediterranean Sea than elsewhere, where high levels of human pressure and proneness to climate change interact in modifying the structure and disrupting regulative mechanisms of marine ecosystems. Rocky reefs are particularly exposed to such environmental changes with ongoing trends of degradation being impressive. Due to the variety of habitat types and associated marine biodiversity, rocky reefs are critical for the functioning of marine ecosystems, and their decline could profoundly affect the provision of essential goods and services which human populations in coastal areas rely upon. Here, we provide an up-to-date overview of the status of rocky reefs, trends in human-driven changes undermining their integrity, and current and upcoming management and conservation strategies, attempting a projection on what could be the future of this essential component of Mediterranean marine ecosystems.


Assuntos
Biodiversidade , Ecossistema , Mudança Climática , Conservação dos Recursos Naturais , Recifes de Corais , Humanos , Mar Mediterrâneo
10.
Biol Conserv ; 263: 109175, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34035536

RESUMO

The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus, initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness.

11.
Sci Rep ; 11(1): 1739, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462332

RESUMO

Understanding how marine heatwaves (MHWs) unfold in space and time under anthropogenic climate change is key to anticipate future impacts on ecosystems and society. Yet, our knowledge of the spatiotemporal dynamics of MHWs is very limited. Here, I combine network theory with topological data analysis and event synchronization to high-resolution satellite data and to a set of Earth System Model simulations to reveal the dynamical organization of complex MHW networks. The analysis reveals that MHWs have already crossed a tipping point separating highly synchronized preindustrial MHWs from the more extreme, but less coherent warming events we experience today. This loose spatiotemporal organization persists under a reduced RCP 2.6 emission scenario, whereas a second abrupt transition towards a permanent state of highly synchronized MHWs is foreseen by 2075 under a business-as-usual RCP 8.5 scenario. These results highlight the risks of abrupt ocean transitions, which may dramatically affect marine life and humanity by eroding valuable time for adaptation to climate change.

12.
Proc Natl Acad Sci U S A ; 117(45): 28160-28166, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106409

RESUMO

The global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats. This pattern contrasts with terrestrial systems, where biotic interactions reportedly weaken away from the equator, but it parallels an emerging pattern of a subtropical peak in marine biodiversity. The higher consumption at midlatitudes was closely related to the type of consumers present, which explained rates of consumption better than consumer density, biomass, species diversity, or habitat. Indeed, the apparent effect of temperature on consumption was mostly driven by temperature-associated turnover in consumer community composition. Our findings reinforce the key influence of climate warming on altered species composition and highlight its implications for the functioning of Earth's ecosystems.


Assuntos
Biodiversidade , Clima , Pesqueiros , Cadeia Alimentar , Alismatales , Animais , Biomassa , Feminino , Peixes , Geografia , Aquecimento Global , Humanos , Masculino
13.
Ecol Appl ; 30(1): e02009, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31549453

RESUMO

In the Anthropocene, marine ecosystems are rapidly shifting to new ecological states. Achieving effective conservation of marine biodiversity has become a fast-moving target because of both global climate change and continuous shifts in marine policies. How prepared are we to deal with this crisis? We examined EU Member States Programs of Measures designed for the implementation of EU marine environmental policies, as well as recent European Marine Spatial Plans, and discovered that climate change is rarely considered operationally. Further, our analysis revealed that monitoring programs in marine protected areas are often insufficient to clearly distinguish between impacts of local and global stressors. Finally, we suggest that while the novel global Blue Growth approach may jeopardize previous marine conservation efforts, it can also provide new conservation opportunities. Adaptive management is the way forward (e.g., preserving ecosystem functions in climate change hotspots, and identifying and targeting climate refugia areas for protection) using Marine Spatial Planning as a framework for action, especially given the push for Blue Growth.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Mudança Climática , Objetivos
14.
Sci Total Environ ; 677: 418-426, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31059884

RESUMO

Marine protected areas (MPAs) represent the main tool for halting the loss of marine biodiversity. However, there is increasing evidence concerning their limited capacity to reduce or eliminate some threats even within their own boundaries. Here, we analysed a Europe-wide dataset comprising 31,579 threats recorded in 1692 sites of the European Union's Natura 2000 conservation network. Focusing specifically on threats related to marine species and habitats, we found that fishing and outdoor activities were the most widespread threats reported within MPA boundaries, although some spatial heterogeneity in the distribution of threats was apparent. Our results clearly demonstrate the need to reconsider current management plans, standardise monitoring approaches and reporting, refine present threat assessments and improve knowledge of their spatial patterns within and outside MPAs in order to improve conservation capacity and outcomes.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , União Europeia , Pesqueiros , Europa (Continente)
15.
Ecology ; 100(2): e02578, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30516273

RESUMO

Research on regime shifts has focused primarily on how changes in the intensity and duration of press disturbances precipitate natural systems into undesirable, alternative states. By contrast, the role of recurrent pulse perturbations, such as extreme climatic events, has been largely neglected, hindering our understanding of how historical processes regulate the onset of a regime shift. We performed field manipulations to evaluate whether combinations of extreme events of temperature and sediment deposition that differed in their degree of temporal clustering generated alternative states in rocky intertidal epilithic microphytobenthos (biofilms) on rocky shores. The likelihood of biofilms to shift from a vegetated to a bare state depended on the degree of temporal clustering of events, with biofilm biomass showing both states under a regime of non-clustered (60 d apart) perturbations while collapsing in the clustered (15 d apart) scenario. Our results indicate that time since the last perturbation can be an important predictor of collapse in systems exhibiting alternative states and that consideration of historical effects in studies of regime shifts may largely improve our understanding of ecosystem dynamics under climate change.


Assuntos
Mudança Climática , Ecossistema , Biofilmes , Biomassa , Análise por Conglomerados
16.
PLoS Biol ; 16(9): e2006852, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30180154

RESUMO

Habitat-forming species sustain biodiversity and ecosystem functioning in harsh environments through the amelioration of physical stress. Nonetheless, their role in shaping patterns of species distribution under future climate scenarios is generally overlooked. Focusing on coastal systems, we assess how habitat-forming species can influence the ability of stress-sensitive species to exhibit plastic responses, adapt to novel environmental conditions, or track suitable climates. Here, we argue that habitat-former populations could be managed as a nature-based solution against climate-driven loss of biodiversity. Drawing from different ecological and biological disciplines, we identify a series of actions to sustain the resilience of marine habitat-forming species to climate change, as well as their effectiveness and reliability in rescuing stress-sensitive species from increasingly adverse environmental conditions.


Assuntos
Biodiversidade , Mudança Climática , Ecossistema , Adaptação Fisiológica , Refúgio de Vida Selvagem , Especificidade da Espécie
17.
Glob Ecol Biogeogr ; 27(7): 760-786, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30147447

RESUMO

MOTIVATION: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. MAIN TYPES OF VARIABLES INCLUDED: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. SPATIAL LOCATION AND GRAIN: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2). TIME PERIOD AND GRAIN: BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. MAJOR TAXA AND LEVEL OF MEASUREMENT: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. SOFTWARE FORMAT: .csv and .SQL.

18.
Ecology ; 99(12): 2654-2666, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30157296

RESUMO

Understanding how increasing human domination of the biosphere affects life on earth is a critical research challenge. This task is facilitated by the increasing availability of open-source data repositories, which allow ecologists to address scientific questions at unprecedented spatial and temporal scales. Large datasets are mostly observational, so they may have limited ability to uncover causal relations among variables. Experiments are better suited at attributing causation, but they are often limited in scope. We propose hybrid datasets, resulting from the integration of observational with experimental data, as an approach to leverage the scope and ability to attribute causality in ecological studies. We show how the analysis of hybrid datasets with emerging techniques in time series analysis (Convergent Cross-mapping) and macroecology (Joint Species Distribution Models) can generate novel insights into causal effects of abiotic and biotic processes that would be difficult to achieve otherwise. We illustrate these principles with two case studies in marine ecosystems and discuss the potential to generalize across environments, species and ecological processes. If used wisely, the analysis of hybrid datasets may become the standard approach for research goals that seek causal explanations for large-scale ecological phenomena.


Assuntos
Big Data , Ecossistema , Ecologia , Pesquisa
19.
Adv Mar Biol ; 79: 61-136, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30012277

RESUMO

Marine bioconstructions are biodiversity-rich, three-dimensional biogenic structures, regulating key ecological functions of benthic ecosystems worldwide. Tropical coral reefs are outstanding for their beauty, diversity and complexity, but analogous types of bioconstructions are also present in temperate seas. The main bioconstructions in the Mediterranean Sea are represented by coralligenous formations, vermetid reefs, deep-sea cold-water corals, Lithophyllum byssoides trottoirs, coral banks formed by the shallow-water corals Cladocora caespitosa or Astroides calycularis, and sabellariid or serpulid worm reefs. Bioconstructions change the morphological and chemicophysical features of primary substrates and create new habitats for a large variety of organisms, playing pivotal roles in ecosystem functioning. In spite of their importance, Mediterranean bioconstructions have not received the same attention that tropical coral reefs have, and the knowledge of their biology, ecology and distribution is still fragmentary. All existing data about the spatial distribution of Italian bioconstructions have been collected, together with information about their growth patterns, dynamics and connectivity. The degradation of these habitats as a consequence of anthropogenic pressures (pollution, organic enrichment, fishery, coastal development, direct physical disturbance), climate change and the spread of invasive species was also investigated. The study of bioconstructions requires a holistic approach leading to a better understanding of their ecology and the application of more insightful management and conservation measures at basin scale, within ecologically coherent units based on connectivity: the cells of ecosystem functioning.


Assuntos
Biodiversidade , Recifes de Corais , Monitoramento Ambiental , Animais , Conservação dos Recursos Naturais , Itália , Mar Mediterrâneo
20.
Glob Chang Biol ; 24(6): 2416-2433, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29623683

RESUMO

Sustained observations of marine biodiversity and ecosystems focused on specific conservation and management problems are needed around the world to effectively mitigate or manage changes resulting from anthropogenic pressures. These observations, while complex and expensive, are required by the international scientific, governance and policy communities to provide baselines against which the effects of human pressures and climate change may be measured and reported, and resources allocated to implement solutions. To identify biological and ecological essential ocean variables (EOVs) for implementation within a global ocean observing system that is relevant for science, informs society, and technologically feasible, we used a driver-pressure-state-impact-response (DPSIR) model. We (1) examined relevant international agreements to identify societal drivers and pressures on marine resources and ecosystems, (2) evaluated the temporal and spatial scales of variables measured by 100+ observing programs, and (3) analysed the impact and scalability of these variables and how they contribute to address societal and scientific issues. EOVs were related to the status of ecosystem components (phytoplankton and zooplankton biomass and diversity, and abundance and distribution of fish, marine turtles, birds and mammals), and to the extent and health of ecosystems (cover and composition of hard coral, seagrass, mangrove and macroalgal canopy). Benthic invertebrate abundance and distribution and microbe diversity and biomass were identified as emerging EOVs to be developed based on emerging requirements and new technologies. The temporal scale at which any shifts in biological systems will be detected will vary across the EOVs, the properties being monitored and the length of the existing time-series. Global implementation to deliver useful products will require collaboration of the scientific and policy sectors and a significant commitment to improve human and infrastructure capacity across the globe, including the development of new, more automated observing technologies, and encouraging the application of international standards and best practices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...